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Two techniques, based on the exchange of momentum and the integration of stress tensor, for the evaluation
of the hydrodynamic forces in the lattice Boltzmann simulations are investigated on the curved and moving
boundaries in two dimensions. The following results are obtained by numerical simulations:(i) the hydrody-
namic forces on an inclined boundary and arc in liquid without flow computed by the stress-integration method
agree with analytical predictions to a very high accuracy, while those by the momentum-exchange method have
considerable errors for small segments;(ii ) the simulation results of the sedimentation of a circular cylinder in
a two-dimensional channel with the stress-integration method for hydrodynamic forces are in excellent agree-
ment with those by a second-order moving finite-element method;(iii ) the particle migrated from the centerline
is found to occur in the simulations of a circular cylinder in a Poiseuille flow by the stress-integration method,
consistent with the Segré-Silberberg effect. In conclusion, the stress-integration method can be a good candi-
date to evaluate the hydrodynamic forces on the elastic boundaries and moving particles in fluid.
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I. INTRODUCTION

Since the pioneering work by Ladd[1], the lattice Boltz-
mann method[2–5] has been a popular tool to simulate solid
particle moving in fluids. The ingredients of such a lattice
Boltzmann simulation usually include: lattice Boltzmann
simulations in the fluid domain, nonslip boundary conditions
at solid-liquid boundaries, appropriate hydrodynamic force
on the solid, and a second-order Newtonian dynamics to up-
date the position, rotation, velocity, and angular velocity of
particles. Ladd extended the bounce-back rule for moving
particles and developed a formula to calculate the hydrody-
namic force exerting on the solid particles based on the mo-
mentum exchange[1,6,7]. Aidum et al. [8,9] attempted to
improve Ladd’s model by removing the fluid within the solid
region so that they could handle a system with solid density
less than fluid density and conserved the fluid mass exactly.
Qi [10] applied the model to simulate the nonspherical par-
ticles in nonzero Reynolds number flow. Behrend[11] ana-
lyzed different boundary conditions based on the bounce-
back rule and proposed a “related bounce back at the nodes”
(RBBN). Recently Raiskinmaket al. [12] applied the
Behrend method to simulate nonspherical particles sus-
pended in a shear flow. Miglioriniet al. [13] used a lattice
Boltzmann approach to quantify the forces exerted on rolling
leukocytes by red blood cells in “virtual blood vessels.” Al-
most all previous lattice Boltzmann methods for suspension
particles have assumed the physical boundary is located at
the middle of the mesh link between a solid node and a fluid
node. The hydrodynamic radius of a suspended particle dif-
fers from the input radius[12].

The determination of the hydrodynamic force involving
curved and moving boundaries is an important issue in the
application of the lattice Boltzmann method to the simula-
tions of the particle suspensions. All the above simulations
evaluate the hydrodynamic force by the momentum-
exchange method[1,11]. The momentum-exchange method
is easy to be implemented and the accuracy to calculate the
hydrodynamic force exerting on the rest solid particles has
been demonstrated[14–17].

On the other hand, He and Doolen[18] calculated the
force by integrating the total stress on the surface on the
cylinder and the components of the stress tensor were ob-
tained by taking respective velocity gradients. In the method
of integrating stress tensor, the stress tensor is derived from
further processing of the distribution functions, such as ex-
trapolation. Recently, Meiet al. compared the simulation re-
sults of several test cases with fixed and complex boundaries
and found that the momentum exchange is superior to the
stress integration[14].

In this paper we will examine the technique of stress in-
tegration for force evaluation in the lattice Boltzmann simu-
lation on curved and moving boundaries in two dimensions
by using the formula proposed by Inamuroet al. [19] to
calculate the stress tensor. Excellent agreement is obtained
on the particle motions at small Reynolds numbers, including
the particle velocity, the particle angular velocity, and the
forces and torques on the moving particles by numerical
simulating of the sedimentation of a circular cylinder in a
two-dimensional channel and comparing with those from a
finite-element method[20–22]. Moreover, the simulation on
neutrally buoyant cylinders in a horizontal pipe flow with
this method shows that the particles migrate laterally away
both from the wall and the centerline and reach a certain
lateral equilibrium position that is consistent with the Segré-
Silberberg effect[23] observed in 1961. It is worth com-
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menting here that the equation to calculate the stress tensor
derived by Inamuroet al. [19], which avoids velocity gradi-
ents, is applied in the lattice Boltzmann simulations so that
not only the noise in the simulations is efficiently reduced,
but also the code is simpler.

The paper is organized as follows. In Sec. II we briefly
describe the lattice Boltzmann method. Section III and IV
review the boundary condition and the two methods to evalu-
ate hydrodynamic forces exerted on the complex and moving
boundary. The numerical simulation results are shown in
Sec. V. In Sec. VI, the conclusion and discussion are pre-
sented.

II. THE LATTICE BOLTZMANN MODEL

The Boltzmann equation with the single relaxation time
approximation reads[24]

]f

]t
+ z · = f = −

1

l
ff − f seqdg, s1d

wherez is the particle velocity,f seqd is the equilibrium dis-
tribution function, andl is the relaxation time.

Discretizing Eq.(1) in the velocity spacez by using a
finite set of velocitiesei, we obtain[25,26]

]f i

]t
+ ei · = f i = −

1

l
ff i − f i

seqdg. s2d

In the model on a square lattice in two dimensions,e0
=s0,0d, ei =cfcospsi −1d /2 ,sinpsi −1d /2g, i =1,2,3,4, and
ei =cfcosps2i −1d /4 ,sinps2i −1d /4g, for i =5,6,7,8 are the
nine possible velocity vectors(D2Q9), and the equilibrium
distribution functions are of the form[3,25]

f i
eq= airF1 +

3

c2ei ·u +
9

2c4sei ·ud2 −
3

2c2u2G , s3d

for athermal fluids. In the equation,a0=4/9, a1=a2=a3
=a4=1/9, anda5=a6=a7=a8=1/36,c=dx/dt is the lattice
speed, anddx and dt are the lattice constant and the time
step, respectively. The densityr and the velocityu are de-
fined by

r = o
i

f i ,

u = o
i

f iei/r. s4d

The lattice Boltzmann equation[4,3,5] is obtained by fur-
ther discretizing Eq.(2) in spacex and timet as

f isx + dxei,t + dtd − f isx,td = −
1

t
sf i − f i

eqd, s5d

wheret=l /dt. The macroscopic equations can be obtained
by a Chapman-Enskog procedure. The viscosity in the mac-
roscopic equations is

n =
s2t − 1d

6
c2dt. s6d

In this paper, we setdx=dt=c=1.

III. BOUNDARY CONDITION FOR COMPLEX
GEOMETRY

Filippova and Hanel[27] presented their scheme for the
treating of a boundary condition by considering a curved
boundary lying between the lattice node of spaceDdx as
shown in Fig. 1. The lattice nodes on the solid and fluid side
are denoted byxb andx f, respectively. We assume

ei = xb − x f

and

eī = − ei .

The filled small circle atxw marked by a letterw, is the
intersection with the the physical boundary on the link be-
tweenxb and x f. The fraction of an intersected link in the
fluid is D.

D =
ux f − xwu
ux f − xbu

, 0 ø D ø 1. s7d

After the collision step, at timet, the distribution functions at
x f are known. In the streaming step,f īsx fd is expected to
obtained by

f īsx f,t + dtd = f īsxb,td. s8d

However, the distribution functionf īsxb,td at the boundary
nodeb is unknown.

Filipova and Hanel assumed the linear interpolation[27]

f īsxb,td = s1 − xdf isx f,td + xf i
s* dsxb,td + 6aieī ·uw, s9d

whereuw=usxw,td is the velocity atxw andx is a parameter.
f i

s* d is a fictitious equilibrium distribution function given by

f i
s* dsxb,td = airF1 + 3ei ·ubf +

9

2
sei ·u fd2 −

3

2
uf

2G , s10d

where u f =usx f ,td is the fluid velocity at the fluid nodef
shown in Fig. 1,ubf is to be determined below. Filipova and
Hanel proposed[27]

ubf = sD − 1du f/D + uw/D andx = s2D − 1d/t

FIG. 1. The layout of the regularly spaced lattices and curved
wall boundary.
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for D ù
1

2
, s11d

and

ubf = u f andx = s2D − 1d/st − 1d for D ø
1

2
, s12d

to obtain a second-order scheme for the “slow flow.” Meiet
al. [28] improved the stability of the scheme by replacing
Eq. (12) with

ubf = u f f andx = s2D − 1d/st − 1d for D ø
1

2
, s13d

whereu f f is the fluid velocity at fluid nodef f shown in Fig.
1. They have used the improved technique to test against
several flow problems, such as the two-dimensional channel
flows with constant and oscillating pressure gradients, flow
due to impulsively started wall, lid-driven square cavity flow,
and flow over a column of circular cylinders to demonstrate
its accuracy and robustness[28]. This boundary treatment
will be adopted in the present paper.

IV. METHODS FOR FORCE EVALUATION IN THE
LATTICE BOLTZMANN METHOD

A. Method based on momentum exchange

For eachrelevant direction ei from a fluid node to a
boundary node, the solid boundary obtained an amount of
momentumf īsxb,tdei − f isx f ,t+deī, where the first term is due
to a fraction of particlesf isx f ,t+d colliding on the boundary
and the second term comes from a fraction of particles
f īsxb,td bouncing back from the boundary in a time step.
Consequently, the hydrodynamic force exerted on the solid
particle at timet along this direction is

Fsxbd = ff āsxb,td + fasx f,t+dgea, s14d

where t+ is the post collision time, andf āsxb,td is obtained
from Eq. (9). The particle forceFT and torqueTT acting on
the solid particle are obtained as

FT = o Fsxbd s15d

and

TT = o sxb − Rd 3 Fsxbd, s16d

where R is the center of mass of the solid particle. The
summation runs over all the relevant directions of the bound-
ary node.

B. Force evaluation based on stress integration

According to those proposed by Inamuroet al., the stress
tensor in the lattice Boltzmann method can be calculated as
follows [19]:

si j = −
1

6t
rdi j − S1 −

1

2t
D o seai − uidsea j − ujdfa,

s17d

wheredi j is the Kronecker delta function andi , j =x,y. This
process avoids using velocity gradients to calculate the stress
tensor. Denoted byS the surface of the cylinder, the hydro-

FIG. 2. A schematic diagram of extrapolation. The distribution
functions at pointC is obtained by linear interpolation from nodesA
andB. The distribution functions at pointO on the boundary of the
cylinder is computed by linear extrapolation fromC andD.

FIG. 3. A schematic diagram of an inclined boundary in lattice
Boltzmann simulations. The heavy line is the boundary. The dotted
lines are the links connecting fluid nodes and solid nodes.

FIG. 4. The hydrodynamic force per unit length of the boundary
in x and y directions, respectively. The dotted lines are the results
from the stress-integration method which are consistent with ana-
lytical predictions exactly. The solid lines are calculated from the
method of momentum exchange and averaged from 0 tox.
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dynamic force and torque are calculated by integrating stress
tensor and momentum flux onS [19]

F =E
S

hs ·n − rufsu − Vd ·ngj · ds,

T =E
S

r 3 hs ·n − rufsu − Vd ·ngj · ds, s18d

wheren is the unit outward normal vector onS, r is a vector
from the center of the cylinder to the point onS, V is the
velocity of the center of mass of the solid particle. The inte-
gral in Eqs.(18) is approximated by the numerical quadra-
ture of 400 points.

In the calculation ofsi j on S, fa on S is obtained from
extrapolation as follows, whileu on Scan be computed from
fa. Figure 2 shows an example of extrapolation. The distri-
bution function atC is obtained by linear interpolation from
those at the nodesA andB. The distribution functions atO
are computed by linear extrapolation from those at the points
C andD. The final distribution functions at the pointO for
the calculation ofsi j is the average of the extrapolated values
of all the relevantdirections. A relevant direction is defined
here as a direction fromO to a nearest-neighbored or next
nearest-neighbored fluid node(D, for example). In order to
increase the stability of the scheme, we establish the follow-
ing restrictions on the choice of therelevantdirections:(A)
The angle between the relevant direction and the normal di-
rection n of the boundary is smaller than 90°; (B) D

=CDI /COI ù0.5.
The method based on momentum exchange does not re-

duce the stability of the lattice Boltzmann simulations. The
extrapolation, on the other hand, usually causes instability.
We have performed many numerical simulations based on
the stress integration and found that it is stable for low-
particle Reynolds numbers(which will be defined in Sec.
IV C), i.e., Re,10, whent is in the range 0.51,t,0.98 in
all the numerical simulations of the tested problems in the
present paper. In the special case that there is not any rel-
evant direction for extrapolation available, we suggest that
the distribution functions atO are those at the nearest-
neighbored fluid node ofO and the accuracy of this sugges-
tion should be tested and presented elsewhere.

V. SIMULATION RESULTS AND DISCUSSION

A. Hydrodynamic force on an inclined boundary

When the lattice Boltzmann method is applied to simulate
the flow in a tube with elastic boundaries such as the artery
[29–31], the hydrodynamic force on a curved boundary will
have to be evaluated. Moreover, since the motion of each
boundary segment depends on the forces acting on it, the
accurate calculation of the hydrodynamic force on each small
segment is of crucial importance. In this subsection, the de-
pendence of the errors on the length of the boundary seg-
ments is investigated in the system shown in Fig. 3. For
simplicity, we assume that there is no fluid flow in the system
and pressure in fluid keeps as a constantp. In lattice Boltz-
mann simulations, equilibrium distribution functions with
zero velocity and a fixed densityr=3p are set on all the fluid
nodes, i.e.,fa= fa

eq. Stress tensor can obtained from Eq.(17)
as

si j = −
1

3
rdi j , s19d

and the hydrodynamic force acting on a segment of the
boundary with a length dl is:

FIG. 5. An arc of radianb and radiusR in fluid.

FIG. 6. The hydrodynamic forceF from outside on the arc is
shown in Fig. 5 inx and y directions. The solid lines and the
symbols are the numerical results from the methods based on stress
integration and momentum exchange, respectively. The insets in(a)
and (b) show the errors.
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FIG. 7. A schematic diagram of a circular particle in a two-
dimensional vertical channelsL=4dd released near one wall.G is
the gravity.

FIG. 8. Settling trajectory for circular cylinders released atx
=0.076 cm at small Reynolds numbersRe. The lines are the nu-
merical results from a second-order moving finite-element method
[21]. The symbols are the simulation results from the present lattice
Boltzmann scheme with stress-integration method.

FIG. 9. The time-dependent particle velocity in horizontal directions at different Reynolds numbers.
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dF =
1

3
rdl n, s20d

where n is the unit vector perpendicular to the boundary.
This is exactly the analytical result.

Figure 4 displays the hydrodynamic force per unit length
of the boundary calculated from the method of momentum
exchange and averaged from 0 tox. It is clear that there are
large errors for smallx, i.e., the method of momentum ex-
change gives large errors for small segments and is not suit-
able for the simulations of the systems with elastic bound-
aries.

B. Hydrodynamic force on arcs

The arc shown in Fig. 5 gives another example with
which to evaluate the hydrodynamic forces in curved bound-
aries. The equilibrium distribution functions are set to all the
fluid nodes. The hydrodynamic forces and the directions on
the arc from outside of the arc are shown in Fig. 6 for both
the methods. The insets in Figs. 6(a) and(b) show the errors
from the evaluation from the exact solution. The method
based on stress integration gives much smaller errors than
that of the momentum exchange.

C. Sedimentation of a circular cylinder in a vertical channel

A circular cylinder moving in a channel under gravita-
tional force has been extensively studied by Josephet al.
using a finite-element method[20–22]. In a previous paper
[32], we used the momentum-exchange method to evaluate
the hydrodynamic force on the circular particle. Excellent
agreements between the lattice Boltzmann method and the
second-order finite-element method by Josephet al. [20–22]
on the moving particles are obtained for the particle veloci-
ties in the vertical direction, the particle angular velocities,
the forces in vertical direction, and torques at small Reynolds
numbers, while there are small discrepancies between those
two methods on the particle velocities and the forces in the
horizontal direction. In the present paper we study the same
flow problem using the lattice Boltzmann method with the
stress-integration method.

The flow geometry is shown in Fig. 7 with the channel
width L=4d, whered=0.1 cm is the diameter of the cylinder.
The cylinder is released atx=0.076 cm and then settles un-
der gravity. The density and the kinematic viscosityn of the
fluid are 1 g/cm3 and 0.01 cm2/s, respectively. In our simu-
lation, the inlet of the domain is always 15d from the

FIG. 10. The time-dependent particle velocity in vertical directions at different Reynolds numbers.
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moving particles, whereas the downstream boundary is 15d
or more from the boundary. Zero velocities are applied uni-
formly for the inlet and the normal derivative of the velocity
is set to zero at outlet. The nonslip velocity condition is
applied to the left and right solid walls. A periodic boundary
condition is used for the top and bottom boundaries.

In the present lattice Boltzmann simulation, the radius of
the cylinder is 13 lattice units.t=0.6. The translation of the
center of the mass of a particle is updated at each Newtonian
dynamics time step by using a so-called half-step “leap-frog”
scheme[33]. The scheme is written as

VSt +
1

2
dtD = VSt −

1

2
dtD + dtFTstd/M , s21d

Rst + dtd = Rstd + dtVSt −
1

2
D + dt2FTstd/M , s22d

whereV is the velocity of the center of mass of the solid
particle, andM is the mass of the solid particle. For a two-
dimensional system, the rotations of the particles are updated
in a similar way. It should be noted that both local mass and
momentum are conserved approximately on the boundaries
as that discussed in detail in Ref.[30] although a point-wise
interpolation scheme usually does not obey exact local mass
and momentum conservation. We also note that the applica-

tion of the volumetric representation[34] may improve the
technique on the mass and momentum conservation.

Four cases with different solid fluid density ratios are
simulated. In Fig. 8 the settling trajectories at different ter-
minal Reynolds numbers from the lattice Boltzmann simula-
tion with stress-integration method are shown together with
the simulation results by a second-order finite-element
method[21]. Excellent agreement between these two meth-
ods can be clearly seen. The terminal particle Reynolds num-
ber in the figure is defined byRe=dup/n, whereup is the
terminal velocity of the particle. Figures 9–11 further display
the time-dependent velocity and angular velocity at different
terminal Reynolds numbers. The lattice Boltzmann simula-
tion results agree with the finite-element simulation results to
high accuracy.

FIG. 11. The time-dependent angular velocity at different Reynolds numbers.

FIG. 12. A neutrally buoyant circular cylinder floating in Poi-
seuille flow.
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D. Motion of a neutrally buoyant circular cylinder in a
Poiseuille flow

Segré and Silberberg[23] discovered that neutrally buoy-
ant particles in a pipe flow will migrate laterally away both
from the wall and the center line and reach a certain equilib-
rium lateral position. Karniset al. [35] verified that this phe-
nomenon is due to an inertia effect of the flow. Tachibana
[36] found experimentally that when the ratio of the particle
diameter to the pipe diameter exceeds 0.2, the phenomenon
is more clear. Recently, Inamuroet al. [19] calculated the
force and torque on the solid particle by integrating stress
tensor and momentum flux on a closed surface for a fixed
radial distance 0.16D from the surface of the cylinder, where
D is the diameter of the cylinder. The Segré-Silberberg effect
was observed in the simulation of a line of cylinders in a
Poiseuille flow.

Figure 12 displays a schematic diagram in our lattice
Boltzmann simulations of a single cylinder in a Poiseuille
flow. The width of the tunnel isD while the diameter of the
particle isDs. The pressure drop from inlet to outlet is 2Dp.
In the simulations, the density of particles isrs=1, while
those of the fluid at inlet and outlet arers±3Dp. t=0.75,
2Dp=0.00 267, Re=9.288,D=100, Ds=25, and Ds/D
=0.25. The inlet and the downstream boundary of the do-
main are always 2d from the the moving particles. Pressure
boundary conditions[37] are applied at the inlet and outlet.
Initially, the particle is set at rest and let the fluid flow de-
velop and approach steady state. Att=10 000 time steps, the
particle is released and will go from left to right.

The lateral migration curves of the cylinders released at
different initial positions between the center line and the
lower walls are shown in Figs. 13 and 14. It is found from
Fig. 13 that the cylinders migrate to the same equilibrium
position atyc/D=0.2874 with the stress-integration method,
which is a little closer to the center line than the lower wall.
This value is a little larger than that in Ref.[19], which is
0.2733. The difference between our simulation and that in
Ref. [19] is that we used the pressure boundary at the inlet
and outlet while Inamuroet al. used a periodic boundary
condition at the inlet and outlet so that they simulated a line
of cylinders rather than a cylinder in a Poiseuille flow. On the

other hand, the cylinder always migrates to the center line by
using the method of momentum exchange, see Fig. 14.

VI. CONCLUSION AND DISCUSSION

The stress-integration method is used to evaluate the hy-
drodynamic force on an inclined plate, arc, and simulations
of a circular cylinder settling in a vertical tube and in a
Poiseuille flow. From the computations, the following results
are obtained:

(1) In the calculations of the hydrodynamic force on an
inclined boundary, the stress-integration method gives accu-
rate results regardless of the length of the inclined boundary
when there is no fluid flow. There are considerable errors
when the method based on momentum transformation is ap-
plied. The stress-integration method is perhaps superior to
the momentum-exchange method when there are elastic
boundaries, on which the forces on small segments of bound-
aries have to be evaluated accurately to determine the motion
of these small segments.

(2) The momentum-exchange method gives larger fluc-
tuation in the calculation on the hydrodynamic forces on an
arc, as shown in Fig. 5. The fluctuation becomes very small
when the arc is closed as a full circle so that the momentum-
exchange method works quite well in the calculation of the
force on a resting circular cylinder.

(3) By simulating the sedimentation of a circular cylinder
in a two-dimensional channel, excellent agreements between
the current lattice Boltzmann method with the stress-
integration method and a second-order finite-element method
are obtained for the results of the time-dependent particle
motions at small Reynolds numbers, including the particle
velocities, the particle angular velocities, and the forces and
torques on the moving particles.

(4) A particle migrated from the center line is found to
occur in the simulations of a circular cylinder in a Poiseuille
flow by the stress-integration method, consistent with the
Segré-Silberberg effect.

Although the method based on stress integration uses ex-
trapolation, which is more noisy and unstable, the method to
calculate the stress tensor proposed by Inamuroet al. [19],

FIG. 13. Lateral migration from different initial positions of a
cylinder a Poiseuille flow at Reynolds number Re=9.288 and for
Ds/D=0.25,obtained by lattice Boltzmann simulations simulated
with stress-integration method.

FIG. 14. Lateral migration from different initial positions of a
cylinder in a Poiseuille flow forDs/D=0.25, obtained by lattice
Boltzmann simulations with the momentum-exchange method.
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which avoids the calculation of the derivation of the velocity,
and the choice of the rèlevant directions for extrapolation
and enough points in the integration of the stress tensor in a
lattice unit reduces the noise effectively. We emphasized that
the formula to calculate the stress tensor[19] not only re-
duces the noise and instability of the lattice Boltzmann
scheme, but also makes the code much simpler. The present
conclusion should be useful for further development of lat-
tice Boltzmann schemes with complex and moving bound-

aries, especially on the numerical simulations for blood flow
[13,30,31,38].

ACKNOWLEDGMENTS

The authors thank Professor H. Hu for providing the data.
This work was supported by the 100 Person Project of the
Chinese Academy of Sciences and National Science Founda-
tion of China under Grant Nos. 19834070 and 19904004.

[1] A. J. C. Ladd, J. Fluid Mech.271, 285 (1994).
[2] G. R. McNamara and G. Zanetti, Phys. Rev. Lett.61, 2332

(1988).
[3] Y. H. Qian, D. d’Humiéres, and P. Lallemand, Europhys. Lett.

17, 479 (1992).
[4] S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, Phys.

Rev. Lett. 67, 3776(1991).
[5] H. Chen, S. Chen, and W. H. Matthaeus, Phys. Rev. A45,

5339 (1992).
[6] A. J. C. Ladd, Phys. Rev. Lett.76, 1392(1996).
[7] A. J. C. Ladd and R. Verberg, J. Stat. Phys.104, 1191(2001).
[8] C. K. Aidun and Y. Lu, J. Stat. Phys.81, 49 (1995).
[9] C. K. Aidun, Y. Lu, and E. Ding, J. Fluid Mech.373, 287

(1998).
[10] D. Qi, J. Fluid Mech.385, 41 (1999).
[11] O. Behrend, Phys. Rev. E52, 1164(1995).
[12] P. Raiskinmakiet al., Comput. Phys. Commun.129, 185

(2000).
[13] C. Migliorini et al., Biophys. J.83, 1834(2002).
[14] R. Mei, D. Yu, W. Shyy, and L. Lou, Phys. Rev. E65, 041203

(2002).
[15] Z. G. Feng and E. E. Michaelides, Int. J. Multiphase Flow28,

479 (2002).
[16] K. Sankaranarayananet al., J. Fluid Mech.452, 61 (2002).
[17] D. S. Clague and P. J. Cornelius, Int. J. Numer. Methods Fluids

35, 55 (2001).
[18] X. He and G. Doolen, J. Comput. Phys.134, 306 (1997).
[19] T. Inamuro, K. Maeba, and F. Ogino, Int. J. Multiphase Flow

26, 1981(2000).
[20] J. Feng, H. H. Hu, and D. D. Joseph, J. Fluid Mech.261, 95

(1994).
[21] H. H. Hu, D. D. Joseph, and M. J. Crochet, Theor. Comput.

Fluid Dyn. 3, 285 (1992).
[22] J. Feng, H. H. Hu, and D. D. Joseph, J. Fluid Mech.277, 271

(1994).
[23] G. Segré and A. Silberberg, Nature(London) 189, 219(1961).
[24] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. A94,

511 (1954).
[25] X. He and L-S. Luo, Phys. Rev. E56, 6811(1997).
[26] T. Abe, J. Comput. Phys.131, 241 (1997).
[27] O. Filippova and D. Hanel, Comput. Fluids26, 697 (1997).
[28] R. Mei, L. Lou, and W. Shyy, J. Comput. Phys.155, 307

(1999).
[29] H. P. Fang, Z. F. Lin, and Z. W. Wang, Phys. Rev. E57, R25

(1998).
[30] H. P. Fang, Z. W. Wang, Z. F. Lin, and M. R. Liu, Phys. Rev.

E 65, 051925(2002).
[31] A. G. Hoekstraet al., Lect. Notes Comput. Sci.2657, 997

(2003).
[32] H. P. Fang, D. R. Noble, H. H. Hu, and S. Y. Chen, J. Comput.

Phys., to be published.
[33] M. P. Allen and D. J. Tildesley,Computer Simulation of Liquid

(Clarendon, Oxford, 1987).
[34] H. D. Chen, Phys. Rev. E58, 3955(1998).
[35] A. Karnis, H. L. Goldsmith, and S. G. Mason, Can. J. Chem.

Eng. 44, 181 (1966).
[36] M. Tachibana, Rheol. Acta12, 58 (1972).
[37] Q. Zou and X. He, Phys. Fluids9, 1591(1997).
[38] M. Hirabayashiet al., Phys. Rev. E68, 021918(2003).

FORCE EVALUATIONS IN LATTICE BOLTZMANN… PHYSICAL REVIEW E 70, 026701(2004)

026701-9


